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Logistic Regression
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Introduction

* Logistic Regression is a classification model, although it is called
“regression”;

* Logistic regression is a binary classification model,;

* Logistic regression is a linear classification model. It has a linear
decision boundary (hyperplane), but with a nonlinear activation
function (Sigmoid function) to model the posterior probability.
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Model Hypothesis

e Sigmoid Function
S — 1
()= I+e™ 0.5

dd(z)

7, - 5(z) (1-46(2)

 Hypothesis 6 -4 -2 0o 2 a4 6

1
1+e-07x

p(y = 1|x;0) = hy(x) = 6(8"x) =

p(y =0]x;0) =1— hg(x)

* Hypothesis (Compact Form)

1
POy 1:0) = (hp()) (L = hg ()= (5 ) (1= (1)
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Learning Algorithm

e (Conditional) Likelihood Function
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i=1

e Maximum Likelihood Estimation

n

max L(6) < mgxz y®loghg (x®) + (1 - Y(i))log(l ~he (x(i)))

NUSTM

i=1
The neg log-likelihood function is also known as
the Cross-Entropy cost function
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Unconstraint Optimization

* Unconstraint Optimization Problem

n

méixz yOloghy (x(i)) + (1 — y(i))log (1 — hg (x(i)))

=1

* Optimization Methods
— Gradient Descent
— Stochastic Gradient Descent
— Newton Method
— Quasi-Newton Method
— Conjugate Gradient
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Gradient Descent/Ascent

* Gradient Computation

N
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* Gradient Ascent Optimization

N
0:=0+a) (v —ho(x)) 20

i=1
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Stochastic Gradient Descent

 Randomly choose a training sample
(x,y)
 Compute gradient
(v —he(x))x
* Updating weights
0:=0+a(y —hg(x))x
* Repeat...

Gradient descent -- batch updating

Stochastic gradient descent -- online updating
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GD vs. SGD
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lllustration of Newton’s Method

tangentline: g = f"(0y) + f"(8,)(0 — 6,)

o — gy _ £'(69)
g=f0 ()
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‘ f(6™)
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Newton’s Method

e Problem
arg min f(0)

& solve: Vf(O) =0

* Second-order Taylor expansion

¢(0) = f(6%) + 7f(6®)(6 - 0®) + % 72£(6X)(6 — 6%9)” ~ £(6)

V() =0=20 = 0% —p2retkn)-1pfe)

* Newton’s method (also called Newton-Raphson method)

gk+1) — g(k) _
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Gradient’ vs. Newton’s Method
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Newton’s Method for Logistic Regression

e Optimization Problem

N
1 . . . .
arg minNZ —y(‘) loghg (x(‘)) — (1 — y(‘))log(l — hg (x(l)))

i=1

e Gradient and Hessian Matrix

N
Vi(0) = %z (hg(x(i) _ y(i))) x®
i=1

N
1 . . L
H= Zl: he(x®)" (1 _ he(xa))) 2@ (x@)T
 Weight updating using Newton’s method

O+ = g — g=1pj ()
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Practice: Logistic Regression

e Given the following training data:
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http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Deeplearning&doc=exercises/ex4/ex4.html

* Implement 1) GD; 2) SGD; 3) Newton's Method for logistic regression, starting
with the initial parameter \theta=0.

 Determine how many iterations to use, and calculate for each iteration and plot
your results.
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Softmax Regression
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Softmax Regression

» Softmax Regression is a multi-class classification model, also called
Multi-class Logistic Regression;

* Itisalso known as the Maximum Entropy Model (in NLP);
* Itis one of the most used classification algorithms.
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Model Des

* Model Hypothesis

T
9j X

cription

p(y =jlx;0) = h(x) =

T )j=1)'")C_1

1+ ¥6ziefr*

1

p(y = Clx;0) = h¢(x) =

 Model Hypothesis (Compact Form)

Qij
p(y =jlx;0) = hj(x) = c oTx
j=1¢
* Parameters
HCXM

-1
1+ 354

exp{Hj,Tx}

,j=12,..,C,where 6, =0
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Maximum Likelihood Estimation

e (Conditional) Log-likelihood

NUSTM

Softmax Regression

N
1(0) = Z logp(y@ |x(i>; )
i=1
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1{y® = j}logh;(x®)

Logistic Regression
1(0) = Z yDloghg (x) + (1 - y(‘))log(l — hg(x(‘)))

i=1
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Gradient Descent Optimization

 Gradient
dlog hj(x) | (1—hy(x))x, j=k
09, | =h()x, j#*k
0 %1 Uy = j}loghj(x) _ | (1 - h(0))x, y=k
00, —hy (x)x, y+k

= (1{y = k} — hy(x))x

a1(0) . . .
— E (1{v® =kl — (@) (©)
36, . ( {y k} hy (x ))x
l
Error x Feature
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Gradient Descent Optimization

e Gradient Descent

N
0,:= 0, + aZ(l{y(i) = k} — hy(x©))x®

=1
T
egk X

C 0, x’

where h; (x) = k=12, ..C

e Stochastic Gradient Descent

0,:=0, + a(l{y =k} — hk(x))x
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The other optimization methods

* Newton Method
 Quasi-Newton Method (BFGS)
* Limited Memory BFGS (L-BFGS)
* Conjugate Gradient

e GIS

e IS
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Practice: Softmax Regression

e Given the following training data:
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http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=Deeplearning&doc=exercises/ex4/ex4.html

* Implement logistic regression with 1) GD; 2) SGD.
* Implement softmax regression with 1) GD; 2) SGD.
 Compare logisitic regression and softmax regression.
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Questions?
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