

Lecture 3 Logistic Regression & Softmax Regression

Rui Xia

Text Mining Group

Nanjing University of Science & Technology
rxia@njust.edu.cn

Supervised Learning

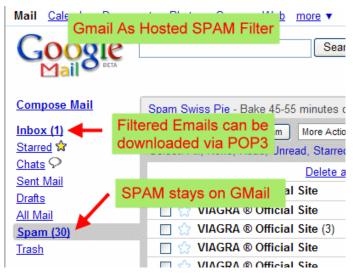
Regression

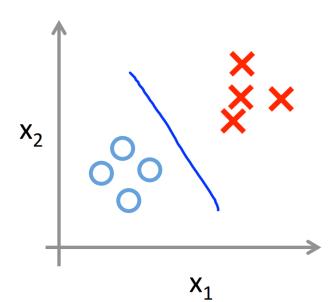
Classification

Logistic Regression

Introduction

- Logistic Regression is a classification model, although it is called "regression";
- Logistic regression is a binary classification model;
- Logistic regression is a linear classification model. It has a linear decision boundary (hyperplane), but with a nonlinear activation function (Sigmoid function) to model the posterior probability.



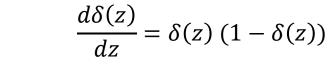


Model Hypothesis

Sigmoid Function

$$\delta(z) = \frac{1}{1 + e^{-z}}$$

$$d\delta(z)$$



Hypothesis

ypotnesis
$$-6 -4$$

$$p(y=1|x;\theta) = h_{\theta}(x) = \delta(\theta^T x) = \frac{1}{1+e^{-\theta^T x}}$$

$$p(y=0|x;\theta) = 1 - h_{\theta}(x)$$

Hypothesis (Compact Form)

$$p(y|x;\theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{(1-y)} = \left(\frac{1}{1 + e^{-\theta^{T}x}}\right)^{y} (1 - \frac{1}{1 + e^{-\theta^{T}x}})^{(1-y)}$$

-2

0

2

4

6

Learning Algorithm

(Conditional) Likelihood Function

$$L(\theta) = \prod_{i=1}^{N} p(y^{(i)}|x^{(i)};\theta)$$

$$= \prod_{i=1}^{N} \left(h_{\theta}(x^{(i)})\right)^{y^{(i)}} \left(1 - h_{\theta}(x^{(i)})\right)^{(1-y^{(i)})}$$

$$= \prod_{i=1}^{N} \left(\frac{1}{1 + e^{-\theta^{T}x^{(i)}}}\right)^{y^{(i)}} \left(1 - \frac{1}{1 + e^{-\theta^{T}x^{(i)}}}\right)^{(1-y^{(i)})}$$

Maximum Likelihood Estimation

$$\max_{\theta} L(\theta) \Leftrightarrow \max_{\theta} \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)})\right)$$

The neg log-likelihood function is also known as the **Cross-Entropy** cost function

Unconstraint Optimization

Unconstraint Optimization Problem

$$\max_{\theta} \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))$$

- Optimization Methods
 - Gradient Descent
 - Stochastic Gradient Descent
 - Newton Method
 - Quasi-Newton Method
 - Conjugate Gradient
 - **–** ..

Gradient Descent/Ascent

Gradient Computation

$$\frac{dl(\theta)}{d\theta} = \sum_{i=1}^{N} \left(y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})} \right) \frac{\partial}{\partial \theta} h_{\theta}(x^{(i)})$$

$$= \sum_{i=1}^{N} \left(y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})} \right) h_{\theta}(x^{(i)}) \left(1 - h_{\theta}(x^{(i)}) \right) \frac{\partial}{\partial \theta} \theta^{T} x^{(i)}$$

$$= \sum_{i=1}^{N} \left(y^{(i)} \left(1 - h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) h_{\theta}(x^{(i)}) \right) x^{(i)}$$

$$= \sum_{i=1}^{N} \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x^{(i)}$$
Error × Feature

Gradient Ascent Optimization

$$\theta \coloneqq \theta + \alpha \sum_{i=1}^{N} (y^{(i)} - h_{\theta}(x^{(i)})) x^{(i)}$$

Stochastic Gradient Descent

Randomly choose a training sample

Compute gradient

$$(y - h_{\theta}(x))x$$

Updating weights

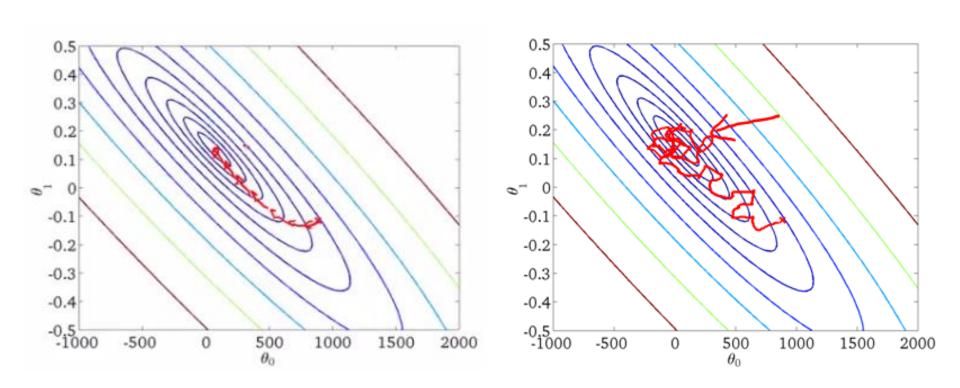
$$\theta \coloneqq \theta + \alpha (y - h_{\theta}(x))x$$

Repeat...

Gradient descent -- batch updating

Stochastic gradient descent -- online updating

GD vs. SGD

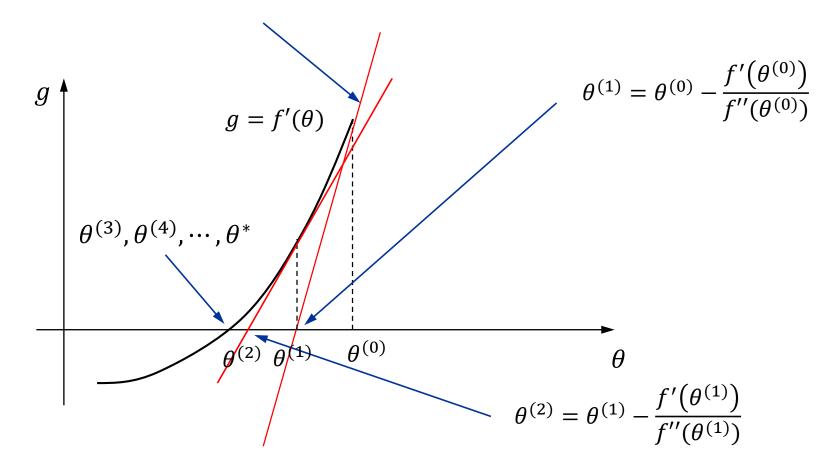


Gradient Descent (GD)

Stochastic Gradient Descent (SGD)

Illustration of Newton's Method

tangent line: $g = f'(\theta_0) + f''(\theta_0)(\theta - \theta_0)$



Newton's Method

Problem

$$arg min f(\theta) \Leftrightarrow solve : \nabla f(\theta) = 0$$

Second-order Taylor expansion

$$\phi(\theta) = f(\theta^{(k)}) + \nabla f(\theta^{(k)})(\theta - \theta^{(k)}) + \frac{1}{2}\nabla^2 f(\theta^{(k)})(\theta - \theta^{(k)})^2 \approx f(\theta)$$

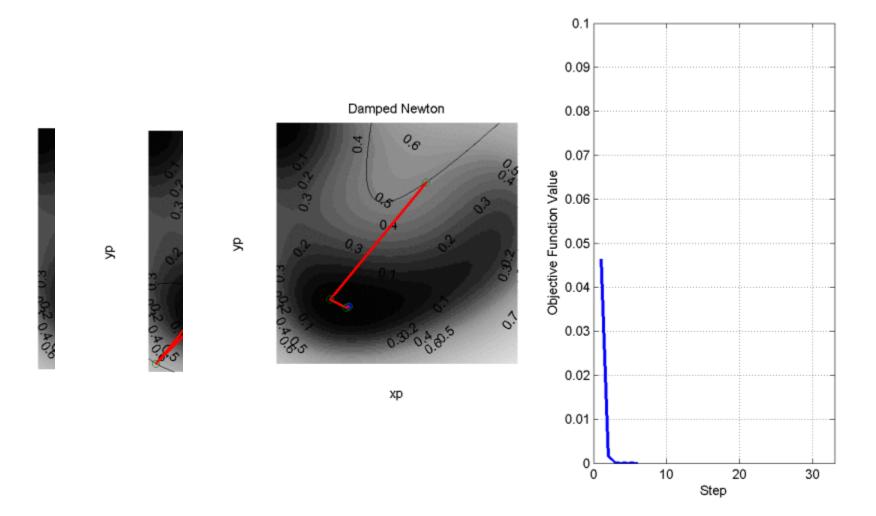
$$\nabla \phi(\theta) = 0 \Rightarrow \theta = \theta^{(k)} - \nabla^2 f(\theta^{(k)})^{-1} \nabla f(\theta^{(k)})$$

Newton's method (also called Newton-Raphson method)

$$\theta^{(k+1)} = \theta^{(k)} - \nabla^2 f(\theta^{(k)})^{-1} \nabla f(\theta^{(k)})$$

Hessian Matrix

Gradient' vs. Newton's Method



Newton's Method for Logistic Regression

Optimization Problem

$$\arg\min \frac{1}{N} \sum_{i=1}^{N} -y^{(i)} \log h_{\theta}(x^{(i)}) - (1-y^{(i)}) \log (1-h_{\theta}(x^{(i)}))$$

Gradient and Hessian Matrix

$$\nabla J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(h_{\theta} (x^{(i)} - y^{(i)}) \right) x^{(i)}$$

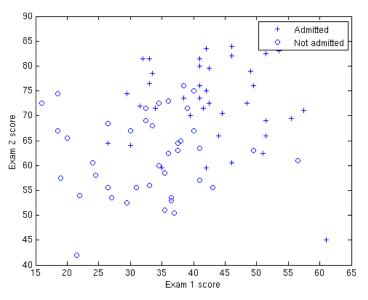
$$H = \frac{1}{N} \sum_{i=1}^{N} h_{\theta} (x^{(i)})^{\mathrm{T}} (1 - h_{\theta} (x^{(i)})) x^{(i)} (x^{(i)})^{\mathrm{T}}$$

Weight updating using Newton's method

$$\theta^{(t+1)} = \theta^{(t)} - H^{-1}\nabla J(\theta^{(t)})$$

Practice: Logistic Regression

Given the following training data:



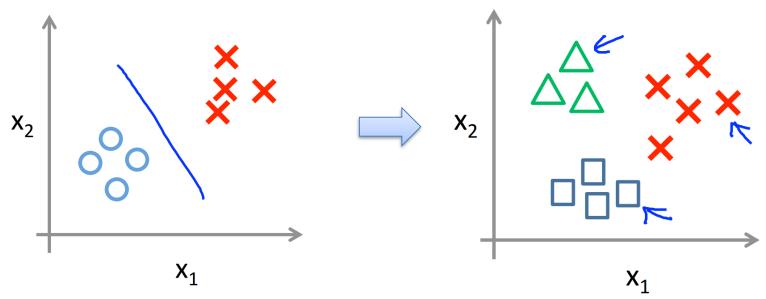
http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html

- Implement 1) GD; 2) SGD; 3) Newton's Method for logistic regression, starting with the initial parameter \theta=0.
- Determine how many iterations to use, and calculate for each iteration and plot your results.

Softmax Regression

Softmax Regression

- Softmax Regression is a multi-class classification model, also called Multi-class Logistic Regression;
- It is also known as the Maximum Entropy Model (in NLP);
- It is one of the most used classification algorithms.



Model Description

Model Hypothesis

$$p(y = j | x; \theta) = h_j(x) = \frac{e^{\theta_j^T x}}{1 + \sum_{j'=1}^{c-1} e^{\theta_{j'}^T x}}, j = 1, ..., C - 1$$
$$p(y = C | x; \theta) = h_C(x) = \frac{1}{1 + \sum_{j'=1}^{c-1} \exp\{\theta_{j'}^T x\}}$$

Model Hypothesis (Compact Form)

$$p(y = j | x; \theta) = h_j(x) = \frac{e^{\theta_j^T x}}{\sum_{j'=1}^C e^{\theta_{j'}^T x}}, j = 1, 2, ..., C, \text{ where } \theta_C = \vec{0}$$

Parameters

$$\theta_{C \times M}$$

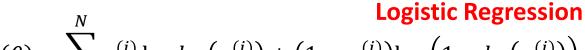
Maximum Likelihood Estimation

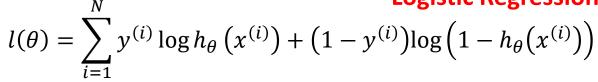
(Conditional) Log-likelihood

$$l(\theta) = \sum_{i=1}^{N} \log p(y^{(i)}|x^{(i)}; \theta)$$
Softmax Regression
$$= \sum_{i=1}^{N} \log \prod_{j=1}^{C} \left(\frac{e^{\theta_{j}^{T}x}}{\sum_{j'=1}^{C} e^{\theta_{j'}^{T}x}}\right)^{1\{y^{(i)}=j\}}$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{C} 1\{y^{(i)}=j\} \log \left(\frac{e^{\theta_{j'}^{T}x}}{\sum_{j'=1}^{C} e^{\theta_{j'}^{T}x}}\right)$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{C} 1\{y^{(i)}=j\} \log h_{j}(x^{(i)})$$





Gradient Descent Optimization

Gradient

$$\frac{\partial \log h_j(x)}{\partial \theta_k} = \begin{cases} (1 - h_k(x))x, & j = k \\ -h_k(x)x, & j \neq k \end{cases}$$

$$\frac{\partial \sum_{j=1}^{C} 1\{y=j\} \log h_j(x)}{\partial \theta_k} = \begin{cases} (1-h_k(x))x, & y=k\\ -h_k(x)x, & y\neq k \end{cases}$$

$$= (1\{y = k\} - h_k(x))x$$

$$\frac{\partial l(\theta)}{\partial \theta_k} = \sum_{i=1}^{N} \left(1\{y^{(i)} = k\} - h_k(x^{(i)}) \right) x^{(i)}$$

Error × Feature

Gradient Descent Optimization

Gradient Descent

$$\theta_k := \theta_k + \alpha \sum_{i=1}^N (1\{y^{(i)} = k\} - h_k(x^{(i)})) x^{(i)}$$

where
$$h_k(x) = \frac{e^{\theta_k^{-1}x}}{\sum_{k'=1}^{C} e^{\theta_{k'}^{-T}x}}$$
, $k = 1, 2, ..., C$

Stochastic Gradient Descent

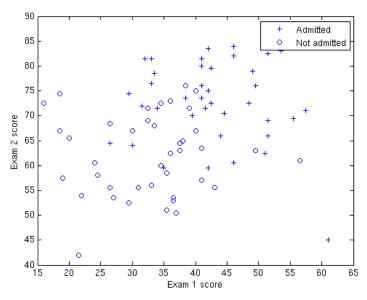
$$\theta_k := \theta_k + \alpha (1\{y = k\} - h_k(x))x$$

The other optimization methods

- Newton Method
- Quasi-Newton Method (BFGS)
- Limited Memory BFGS (L-BFGS)
- Conjugate Gradient
- GIS
- IIS
- •

Practice: Softmax Regression

Given the following training data:



http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html

- Implement logistic regression with 1) GD; 2) SGD.
- Implement softmax regression with 1) GD; 2) SGD.
- Compare logisitic regression and softmax regression.

Questions?