Lecture 5: Linear Models Review

Rui Xia

School of Computer Science and Engineering Nanjing University of Science and Technology

Linear Models (We Learnt So Far)

Linear Regression

Logistic Regression

• Perceptron Algorithm

3 Key Concepts in Machine Learning

- Hypothesis
 - Math models with (unknown) parameters (or structures)
- Learning (to estimate the parameters)
 - Maximum Likelihood Estimation (MLE), MAP, Bayesian Estimation
 - Cost Function Optimization
- Decision
 - Bayes decision rule
 - Direct prediction function

Model Hypothesis

Linear Regression

$$h_{\theta}(x) = \theta^T x$$

Perceptron Algorithm

$$h_{\theta}(x) = \begin{cases} 1 & if \ \theta^T x \ge 0 \\ 0 & if \ \theta^T x < 0 \end{cases}$$

Logistic Regression

$$h_{\theta}(x) = \delta(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$P(y = 1|x; \theta) = h_{\theta}(x) \qquad P(y = 0|x; \theta) = 1 - h_{\theta}(x)$$

Learning Criteria (Cost Functions)

Linear Regression

$$J_{l}(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Maximum Likelihood ⇔ Least Mean Square

Learning Criteria (Cost Functions)

Perceptron Algorithm

$$\begin{split} J_{p}(\theta) &= \sum_{x^{(i)} \in M_{0}} \theta^{T} x^{(i)} - \sum_{x^{(j)} \in M_{1}} \theta^{T} x^{(j)} \\ &= \sum_{i=1}^{m} \left(\left(1 - y^{(i)} \right) h_{\theta} \left(x^{(i)} \right) - y^{(i)} \left(1 - h_{\theta} \left(x^{(i)} \right) \right) \right) \theta^{T} x^{(i)} \\ &= \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \theta^{T} x^{(i)} \end{split}$$

Perceptron Criterion

Learning Criteria (Cost Functions)

Logistic Regression

$$J_c(\theta) = \sum_{i=1}^m y^{(i)} log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) log (1 - h_{\theta}(x^{(i)}))$$

Maximum Likelihood ⇔
Minimum Cross Entropy Error

Gradient Descent Optimization

Linear Regression

$$\frac{\partial}{\partial \theta} J_l(\theta) = \frac{1}{2} \frac{\partial}{\partial \theta} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$= \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\theta \coloneqq \theta - \alpha \frac{\partial}{\partial \theta} J_l(\theta) = \theta - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(Stochastic) Gradient Descent Optimization

Perceptron Algorithm

$$\frac{\partial}{\partial \theta} J_p(\theta) = \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

$$\omega := \omega + \alpha (y - h_{\theta}(x))x$$

$$= \begin{cases} \omega + \alpha x & \text{if } y = 1 \text{ and } h_{\theta}(x) = 0 \\ \omega - \alpha x & \text{if } y = 0 \text{ and } h_{\theta}(x) = 1 \\ \omega & \text{others} \end{cases}$$

Gradient Descent Optimization

Logistic Regression

$$\begin{split} \frac{\partial J_{c}(\theta)}{\partial \theta} &= \sum_{i=1}^{m} \left(y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})} \right) \frac{\partial}{\partial \theta} h_{\theta}(x^{(i)}) \\ &= \sum_{i=1}^{m} \left(y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})} \right) h_{\theta}(x^{(i)}) \left(1 - h_{\theta}(x^{(i)}) \right) \frac{\partial}{\partial \theta} \theta^{T} x^{(i)} \\ &= \sum_{i=1}^{m} \left(y^{(i)} \left(1 - h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) h_{\theta}(x^{(i)}) \right) x^{(i)} \\ &= \sum_{i=1}^{m} \left(y - h_{\theta}(x^{(i)}) \right) x^{(i)} \end{split}$$

 $\theta := \theta + \alpha \sum (y^{(i)} - h_{\theta}(x^{(i)})) x^{(i)}$

Any Questions?